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Abstract

Background: High-throughput sequencing of cDNA (RNA-seq) is overtaking microarrays

as the primary approach to transcriptome profiling. A fundamental task of RNA-seq is to

identify genes that are differentially expressed between two or more conditions. Many sta-

tistical methods are available to perform this task, using different ways of normalizing the

counts, modeling gene expression, testing for differential expression and dealing with outliers.

However, no clear consensus exists on which of these methods perform best.

Methodology: We conduct a comparison of twelve methods for differential gene expression

analysis of RNA-seq data. Our approach consists of two parts. First, we perform a concor-

dance analysis in which we apply the methods on several real RNA-seq datasets to understand

to which extent the methods come to the same results and which methods are more alike than

others. Second, we conduct a simulation study to empirically assess the performance of the

methods under varying conditions.

Conclusions: Whereas previous research states that no method is optimal under all circum-

stances, we claim that two methods have a clear advantage over the other methods: edgeR

robust and limmaVoom (with and without sample quality weights). edgeR robust has the

most favorable trade-off between power and real false discovery rate (FDR) in the presence

of outliers, but is too liberal in the sense that the true FDR considerably exceeds the target

FDR. limmaVoom also achieves a good trade-off between power and real FDR and performs

best in terms of FDR control.
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Introduction

Phenotypic variations are known to be largely characterized by distinct patterns of gene

expression. For a long time microarrays were the primary technology to measure gene ex-

pression levels. Recently RNA-sequencing (RNA-seq) has become a competitive alternative to

the microarray technology. Unlike microarrays, RNA-seq expression profiles consist of counts,

reflecting the number of sequence reads mapped to each gene. Many different methods have

been developed to identify differentially expressed genes from these RNA-seq data, but no

clear consensus exists on which of these methods perform best. In this thesis we compare

the most frequently used methods for differential gene expression analysis of RNA-seq data

to ultimately come to a recommendation on which methods are best to use.

Chapter 1 of this report consists of a literature study. In Section 1.1 we summarize the biolog-

ical processes behind gene expression and introduce RNA-seq as an alternative to microarrays

for gene expression profiling. Subsequently, we explain the different components of differential

expression analysis, pointing out the challenges in each of the steps (Section 1.2). Afterwards

we discuss how the most frequently used methods concretely fill in each of these components

(Section 1.3). In Section 1.4 we review the existing literature that compares and evaluates

the different methods.

In Chapter 2 we explain the methodology of our own research. After defining the scope

and the overall approach of our research (Section 2.1), we give a detailed description of the

different datasets used (Section 2.2). It will become clear that the different datasets reflect

the variety of settings in which RNA-seq is used. In Sections 2.3 and 2.4, we go into more

detail on the two pillars of our research. For the concordance analysis, in which we apply

the methods on several real RNA-seq datasets, we describe our choice for the parameter set-

tings of the methods and we explain the analyses we will perform to assess similarities and

dissimilarities between the methods. While the concordance analysis allows to make state-

ments on which methods are more alike than others, it does not allow to make statements

on which methods perform best. To this extent we perform a simulation study. We give a

detailed explanation of the simulation setup and we define the performance metrics to be used.
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3

Chapter 3 discusses the most insightful results of both the concordance analysis and the

simulation study. Where possible we link our results to the literature we discussed in chapter

1. Based on the results we will motivate that either limmaVoom (with and without quality

weights) or edgeR robust is the best methods to use, depending on whether power of FDR

control is of primary interest to the researcher. We end with some suggestions for further

research.



Chapter 1

Literature

1.1 Background

1.1.1 Gene expression

DNA, which stands for deoxyribonucleic acid, is a double stranded molecule with a helical

structure and is present in the nucleus of all living cells. Structurally, each strand of the DNA

is a polymer, which consists of monomers called nucleotides. Each nucleotide is composed

of a nitrogenous base, a five-carbon sugar and a phosphate group. There are four types of

nucleotides, differing only in the nitrogenous base: adenine (A), guanine (G), cytosine (C)

and thymine (T). These bases are in the inside of the helix, forming the steps of the spiral

staircase. Each base on one strand pairs with just one type of base on the other strand: ade-

nine pairs to thymine in two hydrogen bonds and cytosine pairs to guanine in three hydrogen

bonds. This phenomenon, called base pairing, implies that the sequence of bases on one

strand uniquely determines the entire set of base pairs. The order of these bases encodes all

biological information required to make proteins. The process of protein synthesis from DNA

consists of two steps and is referred to as the central dogma of molecular biology. In a first

step, the transcription step, the information contained in a section of DNA is replicated in

the form of a newly assembled piece of messenger RNA (mRNA). In the second step, the

translation step, mRNA finds its way to a ribosome where it is used to make proteins. It

is exactly these proteins that regulate all biological processes of the organism.

Not all nucleotides in the DNA encode a function. The subunits of DNA that encode a function

are called genes. A gene encodes either a protein product or a functional RNA product.

Whereas protein-coding genes go through both steps as described in the central dogma of

molecular biology, RNA-coding genes only go through the first step and are transcribed in

non-coding RNA (ncRNA) but are not translated into proteins. The process of producing

a biologically functional molecule in the form of either RNA or a protein is called gene

expression. Measuring RNA concentration levels is a useful tool in determining how the

4
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transcriptional machinery of the cell is affected in the presence of external signals (e.g. a drug

treatment), or how cells differ between a healthy state and a diseased state. Genes that show

differences in expression level between two conditions, are called differentially expressed (DE)

genes.

1.1.2 RNA-sequencing

For most of the past two decades, DNA microarrays were the predominant technology for

expression profiling. The microarray technology is based on the principle of hybridization

between complementary base pairs. Expression levels are assessed by measuring the intensity

of the light that is emitted by the fluorescently labeled target cDNA that binds with the

probes on the microarray chip. In the past few years, RNA-sequencing has emerged as

a new revolutionary tool for transcriptomics (Wang et al., 2009). RNA-seq is based on the

principle of high-throughput sequencing, a catch-all term for a set of of technologies that allow

to determine the order of bases in DNA or RNA quickly and cheaply. Unlike microarrays,

RNA-seq profiles consist of integer counts, reflecting the number of sequence reads mapped

to each genomic feature of interest. Compared to microarrays, RNA-seq offers a number of

advantages: it is not limited to detecting transcripts that correspond to existing genomic

sequences, it has a much larger dynamic range of expression levels over which transcripts can

be detected and it requires less RNA sample. While RNA-seq is used for a variety of appli-

cations, including the detection of alternative splice forms and novel transcript discovery, it

is most commonly used for detecting differential expression between experimental conditions,

which is also the focus of this master thesis.

Figure 1.1 illustrates the workflow of a typical RNA-seq experiment. The RNA from

a sample is fragmented into small pieces, which are then reverse transcribed into more stable

complementary DNA (cDNA) using random primers. These short pieces of cDNA are ampli-

fied by polymerase chain reaction (PCR) and sequenced by a sequencing machine, resulting

in millions of short sequence read-outs, called “reads”. Subsequently the reads are mapped to

a reference genome (the case of de novo assembly is not illustrated here), using an algorithm

that tells which region each read comes from. By counting the number of reads for a set of

genomic features, we obtain a measure of the expression of these genomic features. While

these genomic features could be genes, exons or junctions, we will work at gene level in the

remainder of this thesis. The result of sequencing a single sample is thus a vector of feature

counts. The feature counts of all samples are put together in a count table with the features

as rows and the samples as columns. This table is the starting point for differential expression

analysis, which is the topic of this master thesis.
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Figure 1.1: Workflow for a typical RNA-seq experiment, modified from Figure 1 of Li et al. (2012)

1.2 Components of DE methods

Differential gene expression analysis of RNA-seq data generally consists of three components:

normalization of the counts, statistical modeling of gene expression and testing for differential

expression (Rapaport et al., 2013). As recent publications (Zhou et al., 2014; Love et al., 2014)

emphasize the influence of outliers and the need to deal with them in an appropriate way,

we treat the topic of outliers in a separate subsection. It may be clear though that outlier

correction is intertwined with the statistical modeling of gene expression and testing for

differential expression. In Sections 1.2.1-1.2.4, we give a general discussion of the challenges

in each of these steps. For each step, we will already briefly indicate the general approach

used by the methods we discuss in full depth in Section 1.3: edgeR classic (Robinson et al.,

2010), edgeR glm (McCarthy et al., 2012), edgeR robust (Zhou et al., 2014), DESeq (Anders

and Huber, 2010), DESeq2 (Love et al., 2014), limmaQN (Rapaport et al., 2013), limmaVoom

(Law et al., 2014), limmaVoom with Quality Weights (Liu et al., 2015), limmaVst (Soneson

and Delorenzi, 2013), baySeq (Hardcastle and Kelly, 2010), PoissonSeq (Li et al., 2012) and

SAMSeq (Li and Tibshirani, 2013).

1.2.1 Normalizing the counts

While originally it was claimed that one advantage of RNA-seq is that it does not require

sophisticated normalization of the data sets (Wang et al., 2009), the current view is that

normalization is an essential step in the analysis of RNA-seq data (Dillies et al., 2013). The

aim of normalization is to remove systematic technical effects that occur in the data to

make samples comparable and ensure that technical bias has minimal impact on the results.
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The most obvious source of variation is the large differences in the total number of

reads between samples. Denote Ygi as the raw count of gene g (g = 1, · · · , n) in sample

i (i = 1, · · · ,m). Then the total number of reads, also called the library size, of sample

i is given by Ni =
∑n

g=1 Ygi. The sequencing depth di of a sample i is a measure of the

relative number of reads in sample i versus the other samples. The raw counts of each sample

should be normalized though division by the sample’s sequencing depth. However, accurate

estimation of the sequencing depth is not that trivial. The original and most straightforward

approach, referred to as total count normalization, is to calculate the sequencing depth

di of each sample i as the ratio of the library size of sample i versus the average library size.

di =
Ni

1/m
∑m

i=1Ni

such that the normalized counts Y
′
gi are given by

Y
′
gi = Ygi/di

However, such a normalization is generally not enough (Robinson et al., 2010). Even if

library sizes are equal, RNA-seq counts inherently represent relative abundances of the genes.

If some genes have extremely high expression in one sample, or a large number of genes

are only expressed in one sample, these genes may repress the counts for all other genes.

The latter group of genes may, perhaps incorrectly, seem to have lower expression compared

to a sample where the counts are distributed more evenly and this may lead to a lot of

false positives. To account for this, more complex normalization schemes have been

proposed: TMM normalization (edgeR and limmaVoom with and without quality weights),

median-of-ratios normalization (DESeq, DESeq2, limmaVst), upper-quartile normalization

(baySeq), quantile normalization (limmaQN), normalization by total count of least differential

genes (PoissonSeq) and Poisson sampling normalization (SAMSeq). Often these normalization

schemes start from the assumption that most genes are not differentially expressed and that

the set of DE genes is less or more equally divided between upregulated and downregulated

genes. Each of these normalizations is discussed in more detail in Section 1.3 when we discuss

the respective DE-methods they are used for. All of them try to achieve comparability between

samples. Other approaches exist that also aim to facilitate comparison of expression levels

between genes within a sample. These approaches rescale gene counts to also correct for gene

length and GC-content. We will not further discuss these latter approaches.

1.2.2 Statistical modeling of gene expression

Whereas a number of early RNA-seq publications applied statistical methods developed for

microarrays to analyze RNA-seq data (Cloonan et al., 2008; Perkins et al., 2009), later pub-

lications argued that these microarray methods are not applicable to RNA-seq data, as these
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data are discrete counts rather than continuous measurements.

A natural representation of gene read counts would be the Poisson distribution. The

PoissonSeq method (Li et al., 2012) amongst others uses the Poisson distribution to model

the counts. An important property of the Poisson distribution is that the variance equals the

mean. Marioni et al. (2008) reported that count data from technical replicates are indeed well

characterized by a Poisson distribution. Technical replicates are samples that share the same

underlying RNA-sample, but that have been sequenced in different runs. Biological replicates

on the other hand share the same condition but originate from different RNA-samples taken

from different cell lines, organisms etc. It turns out that for biological replicates the variance

is larger than the mean and the negative binomial (NB) distribution, also called the

overdispersed Poission model, is more appropriate (Robinson and Smyth, 2008). The simu-

lation studies of Lu et al. (2005) show that the NB assumption can be reliable in non-NB

sampling situations as well and as such provides a more flexible framework for real data. DE-

methods like edgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010), DESeq2 (Love

et al., 2014) and baySeq (Hardcastle and Kelly, 2010) model the counts by means of a NB

distribution. The negative binomial distribution is uniquely determined by the mean µ and

the variance σ2. For the count Ygi of gene g in sample i, we thus have that Ygi ∼ NB(µgi, σ
2
gi).

The relationship between σ2gi and µgi is defined as σ2gi = µgi + αgiµ
2
gi, where αgi is called

the dispersion. Most methods assume that within a condition, a gene’s dispersion is the

same across replicates, such that αgi can be replaced with αg in the aforementioned formula.

Even then, estimation of the dispersions remains a challenge, as in most cases there is

only a limited number of samples (experimental designs with two to three replicates per

condition are common) resulting in highly variable dispersion estimates for each gene. Using

these noisy estimates directly would compromise the accuracy of DE testing. Therefore, DE

methods use some sharing of information across genes to come to more reliable dispersion

estimates. The way how this is done varies from method to method as further discussed in

Section 1.3.

The limma-based methods use a completely different approach: Law et al. (2014) revisits the

idea of applying normal-based statistical methods developed for microarrays on RNA-

seq data. They start from the observation that statistical methods developed specifically

for RNA-seq counts rely on approximations of various kinds. They suggest that it might

be more important to correctly model the mean-variance relationship than to specify the

exact probabilistic distribution of the counts. Yet other methods, of which SAMSeq (Li and

Tibshirani, 2013) is the most well-known, get around the difficulty of modelling counts by

using a non-parametric approach.
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1.2.3 Testing for differential expression

Once the statistical model of gene expression has been defined, a test for differential ex-

pression is performed to determine which genes show evidence for differences in expression

level between experimental groups, taking into account technical and biological variation in

these expression levels. While edgeR classic and DESeq use an exact test, edgeR glm and

edgeR robust use a likelihood ratio test, DESeq2 a Wald test and the limma-based methods

a moderated t-test. PoissonSeq performs a score test for the significance of the term that

models differential expression in the log-linear model it estimated. SAM-seq calculates a kind

of Wilcoxon rank-sum test of which the p-value is calculated by means of a permutation ap-

proach. baySeq estimates the posterior probabilities of two models, one reflecting differential

expression and the other no differential expression. It does not generate p-values but the

posterior likelihoods can be used for hypothesis testing.

Since thousands of tests are performed (one corresponding to each gene), a correction for

multiple testing needs to be included to avoid an uncontrolled inflation of type I-errors.

All methods that generate p-values correct for multiple testing by applying the Benjamini-

Hochberg FDR procedure (Benjamini and Hochberg, 1995), except for PoissonSeq and SAM-

Seq that propose a different approach based on permutation plug-in (Tusher et al., 2001).

In Bayesian statistics no correction for multiple testing is required. As such, the posterior

probability of differential expression as returned by baySeq can be used directly for testing.

1.2.4 Correcting for outliers

We say that a (normalized) count Y
′
gi of gene g in replicate i is an outlier if its value is

markedly outside the range of (normalized) counts of gene g in the other replicates. For

example, if gene g has single-digit counts for all samples belonging to a specific condition,

except for one sample where the count of gene g is in the thousands, we say this latter count

value is an outlier or that gene g is an outlier gene. Li and Tibshirani show that parametric

methods are very sensitive to outliers: the log fold change (LFC) is overly influenced by

individual outliers, leading to a too high true false discovery rate (FDR). There are several

possible reasons for outliers. A gene may be highly expressed in one individual, but not in

others. In this case expression is related to the individual, not to the condition. Mapping

errors as well can produce outliers.

While older parametric DE-methods did not pay a lot of attention to outliers, newer DE-

methods specifically address this issue. DESeq2 removes genes with outlying observations or

imputes a trimmed value for them, edgeR robust downweights outlying genes. Non-parametric

methods like SAMSeq don’t make distributional assumptions and are by nature less sensitive

to outliers.
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1.3 Overview selected methods

Many different methods are available for DE analysis of RNA-seq data. Xiong et al. (2014)

states that edgeR, DESeq, limma-based methods, baySeq, PoissonSeq and Cuffdiff are among

the most widely used tools for DE analysis. Besides two exceptions, we limit the scope of this

thesis to these methods, both for the detailed discussion of DE methods in this section as for

the set of methods that we include in our own research. A first exception is that Cuffdiff is

not included as it is not available in R. A second exception is that we add SAMSeq as we

also want to include a non-parametric method. An overview of the overall approach of the

selected methods is shown in Table 1.1, a more detailed description is given below.

1.3.1 edgeR classic, edgeR glm, edgeR robust

The edgeR package (Robinson et al., 2010) uses TMM normalization, which stands for the

trimmed mean of M-values normalization, as the default normalization method as proposed

by Robinson and Oshlack (2010). TMM normalization is based on the hypothesis that most

genes are not differentially expressed. One sample r is picked as the reference sample, the

other samples are the test samples. For each test sample i a TMM factor is computed based

on the genes’ log expression ratios M r
gi (the M-values):

M r
gi = log2

Ygi/Ni

Ygr/Nr

with

M r
gi the log expression ratio of test sample i versus reference sample r for gene g

Ygi and Ygr the raw counts of gene g in test sample i and reference sample r respectively

Ni and Nr the library sizes of test sample i and reference sample r respectively

The TMM for test sample i is then the weighted average of these M-values, after excluding

the genes with the most extreme M-values and the genes with the highest absolute expression

levels. The weights are determined as the inverse of the approximate asymptotic variance

and account for the fact that log fold changes from genes with larger read counts have lower

variance on the logarithmic scale. Assuming that most genes are not differentially expressed,

the TMM should be close to 1. If it is not, its value provides an estimate of the correction

factor that must be applied to the library sizes (not the raw counts) in the statistical analysis.

The correction factor for the reference sample is 1.

edgeR models the counts by means of a NB model. It estimates a common or trended

dispersion for all tags and then applies an empirical Bayes strategy for squeezing the tag-

wise dispersions toward the common or trended dispersion (Robinson and Smyth, 2007). The
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amount of shrinkage is determined by the prior weight given to the common or trended dis-

persion and the precision of the tagwise estimates. As such edgeR allows the estimation of

gene-specific biological variation, even for experiments with minimal levels of biological repli-

cation. edgeR classic estimates the dispersions using quantile-adjusted conditional maximum

likelihood (qCML), conditioning on the total count of the particular gene (Robinson and

Smyth, 2008). edgeR classic can only be used for designs with a single factor. edgeR glm can

also be used for multifactor designs and fits generalized linear models given a count matrix

and a design matrix (McCarthy et al., 2012). edgeR glm uses the Cox-Reid profile-adjusted

likelihood (CR) to estimate the tagwise dispersions. Robust edgeR modifies the edgeR glm

approach by attaching weights to each observation (Zhou et al., 2014). Observations with a

high Pearson residual in the current fit are given lower weight in the next fit. As such the

influence of outliers is dampened.

To test for DE genes, edgeR classic uses an exact test based on quantile-adjusted pseu-

docounts that are generated by the qCML approach. Let ZgA and ZgB denote the sum of

pseudocounts for condition A and condition B respectively. Under the null hypothesis, both

ZgA and ZgB follow a NB distribution. An exact test similar to the Fisher’s exact test can

then be constructed. Conditioning on ZgA + ZgB, also an NB random variable, the prob-

ability of observing class totals at least as extreme as the ones observed can be calculated.

The 2-sided p-value is defined as the sum of probabilities of condition totals that are not

more likely than those observed. edgeR glm tests for DE genes using the GLM likelihood

ratio test. This test is based on the idea of fitting negative binomial GLMs with the CR

dispersion estimates. edgeR robust follows the same approach but again incorporates the

weights when fitting the GLM model and performing the likelihood ratio test. For all

three edgeR variants, the p-values generated are then corrected for multiple testing by means

of the Benjamini-Hochberg procedure.

1.3.2 DESeq and DESeq2

DESeq (Anders and Huber, 2010) and DESeq2 (Love et al., 2014) use a ‘median-of-ratios’

approach to normalize counts. Similar to TMM, this approach assumes that most genes are

not DE. For each sample a scaling factor is calculated as the median of the ratios of each

gene’s read count in the particular sample over its geometric mean across all samples. The

underlying idea is that non-DE genes should have similar read counts across samples leading

to a ratio of 1. If most genes are non-DE, the median of this ratio for each sample is the

estimated correction factor to be applied to all counts of this sample.

The counts Ygi are modeled by a NB distribution. The relationship between the variance

and the mean is modeled by of means of a gene-specific dispersion parameter. The procedure
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to estimate the dispersions consists of three steps. First, a dispersion value is estimated for

each gene using maximum likelihood. Second, a curve is fitted through the estimates. While

the original version of DESeq used a local regression, the current default for DESeq and DE-

Seq2 is to use a parametric fit. In a third and last step a dispersion value is assigned to each

gene, choosing a value between the gene-wise estimate and the fitted value. DESeq adopts a

rather conservative approach using the maximum of the fitted value and the gene-wise

estimate. DESeq2 shrinks the gene-wise dispersion estimates towards the fitted values to

obtain the final dispersion values. To this extent it uses an empirical Bayes approach, which

lets the strength of shrinkage depend on an estimate of how close the true dispersion values

tend to be to the fit and on the degrees of freedom.

The DESeq approach to test for differential expression is very similar to the one of edgeR

classic, using an exact test for differences between two negative binomial variables. DESeq2

on the other hand adopts a different approach. It first shrinks the MLE-estimates for the

LFC towards zero in a way such that shrinkage is stronger when the available information

for a gene is low. Therefore it employs an empirical Bayes procedure. These shrunken LFCs

together with their standard errors are then used in a Wald test for differential expression.

The p-values of both the DESeq and the DESeq2 approach are then adjusted for multiple

testing using the procedure of Benjamini and Hochberg.

To avoid the gene-wise LFC estimates of being overly influenced by individual outliers, DE-

Seq2 adopts an approach to detect outliers and reduce their impact. Outliers are detected

using the Cook’s distance. By default, outliers in conditions with six or less replicates cause

the whole gene to be removed from subsequent analysis. For conditions that contain seven or

more replicates, DESeq2 replaces the outlier counts with an imputed value. One final remark

on DESeq2 is that it applies an automatic filtering. By default, DESeq2 chooses an average

expression cutoff that maximizes the number of genes found at user-specified target FDR.

1.3.3 limma-based methods

Limma-based methods transform the count data before entering them into the limma

pipeline, a toolkit with statistical methods to perform differential expression analysis on mi-

croarray data. We will first describe the approach behind limmaVoom (Law et al., 2014) and

limmaVoom with quality weights (Liu et al., 2015). At the end of the section we briefly out-

line two alternative limma-based methods: limmaQN (Rapaport et al., 2013) and limmaVst

(Soneson and Delorenzi, 2013).

limmaVoom (with or without quality weights) starts with a normalization of the count data.

While Law et al. proposed a straightforward counts per million normalization, the current
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standard is to use TMM. An obstacle to use these normalized counts in normal-based sta-

tistical methods is that they have unequal variabilities: larger counts have larger variance

than smaller counts. Taking a log2-transformation of the normalized counts counteracts this,

but it even overdoes the adjustment a bit: while the variance is roughly stable for larger

log-transformed normalized counts, it shows a smoothly decreasing trend for the small to

medium log-transformed normalized counts.

As a consequence, the mean-variance relationship needs to be estimated before feeding

the log-transformed normalized counts to the limma pipeline. limmaVoom models the mean-

variance trend of the log-transformed normalized counts at the individual observation

level, rather than applying a gene-level variability estimate to all observations from the same

gene. The trend is estimated in a non-parametric way. A difficulty here is that there is no

replication at observational level from which variances could be estimated. To work around

this, the mean-variance trend is estimated at gene level and this trend is then interpolated to

predict the variances of individual observations. The inverse variances are used as weights in

the rest of the procedure to eliminate the mean-variance relationship in the log-transformed

counts. limmaVoom with quality weights augments this procedure by combining these ob-

servation weights with sample weights that account for variations in sample quality.

In a final stage the log-transformed normalized counts and their associated weights are passed

to the usual limma pipeline for differential expression. A linear model is fit and an empirical

Bayes procedure is applied to test for differential expression by means of a an empirical

Bayes moderated t-test in which both the standard error and the degrees of freedom are

modified. Empirical Bayes smoothing is applied to the standard errors, borrowing informa-

tion from all genes. The degrees of freedom are also adjusted by a term that represents the a

priori number of degrees of freedom for the model. The p-values produced are corrected for

multiple testing by applying the Benjamini and Hochberg procedure.

Two alternative limma-based methods that have been proposed are limmaQN and limmaVst.

limma QN performs a quantile normalization on the log-transformed counts. Quantile

normalization ensures that the counts across all samples have the same empirical distribution

by sorting the counts from each sample and setting the values to be equal to the quantile mean

from all samples. limmaVst applies the variance stabilizing transformation provided

by the DESeq package. Both methods feed the transformed counts to the limma-pipeline

without passing any quality weights.

Limma-based methods are said to inherit the robustness properties from the normal-based

procedures in limma and can be made even more robust using the robust empirical Bayes

options of the limma package.
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1.3.4 baySeq

The default normalization procedure in baySeq (Hardcastle and Kelly, 2010) is an upper-

quartile normalization as proposed by Bullard et al. (2010). Upper-quartile normalization

implies that for each sample the non-zero gene counts are summed up to the upper 25% quan-

tile. Subsequently the counts of each sample are divided by the upper-quartile value of the

sample and multiplied by the average upper-quartile value across samples. We will however

use a TMM-normalization, similar to Soneson and Delorenzi.

baySeq uses a completely different inferential approach compared to the methods discussed

above. baySeq requires the user to define a set of models. Each model divides the samples

into groups, where samples in the same group are assumed to share the same parameters of

the underlying distribution. Imagine the situation where we have two experimental conditions

A and B and that for each experimental condition we have 2 samples, respectively A1, A2

and B1, B2. A first model of no differential expression is then defined by the set of samples

{A1, A2, B1, B2} which all share the same parameters for the underlying distribution . A

second model of differential expression between the two conditions, divides the samples in

two groups, namely {A1, A2} and {B1, B2} where each group has its own set of parameters.

Subsequently baySeq uses an empirical Bayes framework to estimate the posterior prob-

ability of each model for each gene. To this extent baySeq assumes that the counts follow

an NB distribution. The prior distribution of the parameters of the NB model is estimated

by bootstrapping from the data, taking individual counts and finding the quasi-likelihood

parameters.

1.3.5 PoissonSeq

PoissonSeq uses a log-linear model with a different approach to normalization and a novel

procedure for estimating the false discovery rate (Li et al., 2012). The underlying assumption

of this approach is that the counts follow a Poisson distribution. Potential overdispersion in

the data is handled by taking a power transformation.

The log-linear model is estimated in two steps. The first step fits a model under the null

hypothesis that no gene is associated with the outcome. In this step the normalization

factors are estimated by an iterative procedure. A goodness-of-fit (GOF) statistic is used to

estimate which set of genes is least differential between two (or more) conditions. The

normalization factor for a sample i is then calculated by comparing the average total count for

this subset of genes across all samples versus the total count for this subset of genes in sample i.

In the second step, an additional term is added to the model to accommodate differential

expression. The main interest here lies in determining whether the parameter estimate related
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to this additional term is different from zero. Therefore a score statistic is used. The authors

showed that when the Poisson log-linear model holds exactly and under the null hypothesis

of no differential expression, the empirical sampling distribution of this score statistic closely

follows the chi-squared law. Instead of using the FDR-procedure of Benjamini Hochberg,

the authors use a modified version of the permutation plug-in estimate for FDR. The

modification exists in that only the genes whose observed score is small are used in the pooled

permutation distribution that is used to estimate the FDR.

1.3.6 SAMSeq

SAMSeq (Li and Tibshirani, 2013) is the only nonparametric method we discuss in more de-

tail. The authors claim that, by not relying on underlying distributional assumptions, their

method is less sensitive to outliers and allows to better detect consistent patterns in differen-

tial expression.

Normalization of the counts is done by using a resampling strategy. First the sequencing

depths of the samples d1, d2, ..., dm are estimated. One could think of several methods to do

this, but Li and Tibshirani use the approach of PoissonSeq. Instead of just scaling each count

by the sequencing depth of the sample to which it belongs, a Poisson sampling strategy is

applied. The geometric mean d̄ of the sequencing depths is determined. For each sample i, a

normalized count Y
′
gi is resampled using

Y
′
gi ∼ Poisson(

d̄

di
Ngi)

In order to avoid ties between the normalized counts, a small random number is added to

each count.

Once the counts are on a comparable scale, a Wilcoxon rank-sum statistic is calculated

for each gene to test for a difference in ranks between two conditions. As some randomness

is introduced by the resampling procedure, the resampling procedure is repeated a number of

times and for each gene the average is taken of the corresponding Wilcoxon statistics. Since

the distribution of the averaged Wilcoxon statistic is unknown, a permutation plug-in

estimate is used to generate the null distribution and to estimate the FDR.

1.3.7 Other methods

Many more DE-methods are available. DEGSeq (Wang et al., 2010), TSPM (Auer and

Doerge, 2011), NBPSeq (Di et al., 2011), NOISeq (Tarazona et al., 2011), EBSeq (Leng et al.,

2013), DSS (Wu et al., 2013) and ShrinkBayes (Van De Wiel et al., 2013) are only a few of

them. Cuffdiff (Trapnell et al., 2013) is yet another method, but this one is not available in

R. We refer the interested reader to the respective research papers for more information.
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1.4 Performance comparison of DE methods

Many research has been conducted to compare performance between DE methods. Most of

this research was done in the context of a publication of a new method, where the developer

of the method tries to demonstrate that their method outperforms the other methods for at

least one metric. We will only discuss the most recent research that was done in this context:

Zhou et al. (2014), Love et al. (2014), Law et al. (2014) and Liu et al. (2015) that include

benchmarks to demonstrate good performance of their newly developed methods, respectively

edgeR robust, DESeq2, limmaVoom and limmaVoom with quality weights. The drawback

of this type of benchmark is that the authors are less neutral and might select parameter

settings that are most favorable for their method. Therefore, we also discuss the publications

of Rapaport et al. (2013) and Soneson and Delorenzi (2013), which are more neutral. The

drawback of this research is that it starts already to be outdated in the sense that it does

not include all the latest methods or the methods’ most recent version. An overview of the

methods compared in these publications is given in Table 1.2. In the remainder of this section,

we summarize the findings of each of these publications, focusing on those findings that relate

to the methods that we discussed above and that we will use in our own analyses (grey part

of Table 1.2).
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Rapaport et al. (2013) x x x x x x

Soneson and Delorenzi (2013) x x x x x x x x x x x

Law et al. (2014) x x x x x x x x

Love et al. (2014) x x x x x x x x x

Zhou et al. (2014) x x x x x x x x x

Liu et al. (2015) x x

Our research x x x x x x x x x x x

Table 1.2: Methods compared by publication - methods in grey are the ones used in our own research

Instead of using simulations, Rapaport et al. performs a benchmarking exercise that is

based on a real dataset. They mainly use the Sequencing Quality Control (SEQC) dataset

which consists out of 2x5 technical replicates and includes 92 spike-in controls as well as a set

of about one thousand genes that were validated by TaqMan qPCR. The methods compared

are edgeR classic, DESeq, limmaQN, limmaVoom, baySeq, PoissonSeq and Cuffdiff. Based on

hierarchical clustering of samples after normalization and on the correlation of the estimated

LFCs as reported by each method and the qPCR-values, they conclude that all methods

considered perform well in terms of normalization. The ability of the methods to detect DE

genes is assessed in terms of the AUC for the qPRC-validated genes, using an LFC threshold

of 0.5 to classify a gene as DE. The AUC values indicate comparable performance among the
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methods with a slight advantage for edgeR and DESeq. The control of type I errors (at a

nominal FDR of 0.05) is evaluated by checking the distribution of the p-values and looking

at the number of false positives when performing an intra-condition comparison of the SEQC

samples. limmaVoom turned out to be the only method without any false positives, followed

by baySeq, edgeR classic and PoissonSeq. DESeq and limmaQN have considerably more false

positives, the latter one mainly for genes with low average expression levels. A last aspect

that the authors pay specific attention to is the methods’ ability to detect genes expressed

in only one condition. This aspect is evaluated on a different dataset, the ENCODE dataset,

by investigating the relationship between the adjusted p-values of this set of genes with the

signal-to-noise ratio (the ratio of mean over standard deviation) in the expressed condition.

It appears that the limmaQN, limmaVoom and baySeq are the only methods that exhibit the

desired monotonic behavior in this relation, indicating they are better able to detect genes

expressed in only one condition. As an overall observation, the authors state that none of the

methods emerged as favorable in all comparisons and that array-based methods adapted to

RNA-seq perform comparably to methods designed for RNA-seq.

Soneson and Delorenzi examine performance of eleven methods, amongst which edgeR

classic, DESeq, limmaVoom, limmaVst, baySeq and SAMSeq, by means of simulations. They

assess the impact of the percentage of DE genes, the direction of differential expression,

sample size and the presence of outlier genes amongst others. In terms of the ability to dis-

criminate between DE and non-DE genes (expressed by the AUC), the authors find that in

case of more samples (5 to 10 samples per condition) and symmetric differential expression, all

methods perform similarly. In case of less samples and symmetric expression (2 samples per

condition), edgeR classic, DESeq and the limma-based methods generally produce the best

results. Asymmetry in differential expression only negatively influences the AUC for larger

percentages of DE genes. SAMSeq is least affected by the asymmetry. Outliers reduce the

AUC slightly for all methods, but less for the limma-based methods and SAMSeq. Looking

at the type I error rate in the absence of truly DE genes and in case there are no outliers,

all methods are found to control the type I error quite well, with DESeq at the conservative

side. In the presence of outliers, the limma-based methods best control the type I error. Sub-

sequently the authors look at the methods’ ability to control the false discovery rate (FDR)

when there are DE genes. For the lowest number of samples (2 per condition), the FDR is

always poor: either the method does not detect any DE genes (the limma-based methods and

SAMSeq) or the real FDR is way higher than the nominal FDR (the other methods). For

a larger numbers of samples and in case of 10% DE genes (both symmetric and asymmetric

differential expression), FDR control improves, but DESeq and baySeq are at the conserva-

tive side while edgeR classic remains too liberal. A higher percentage of DE genes improves

FDR control in the case of symmetric differential expression and impairs FDR control in the

case of asymmetric differential expression. The FDR of the methods that are based on the
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NB distribution increased when outliers were introduced, while the FDR of the limma-based

methods and SAMSeq was largely unaffected. The performance in terms of power is related

to the performance in terms of FDR: DESeq and baySeq which have the lowest real FDR,

also have the lowest power. edgeR classic has a higher power, but at the cost of a higher

real FDR. SAMSeq appears to have high power and good FDR control for large numbers of

samples, but does not detect any DE genes at all in case of a low number of samples.

Besides a simulation study, Soneson and Delorenzi also analyze real RNA-seq data from two

mouse strains (Bottomly et al., 2011) and compare the results from the different methods. It

turns out that baySeq and DESeq classify less genes as DE compared to the other methods.

SAMSeq (after ShrinkSeq) has the highest number of DE genes. Overlap in the set of DE

genes is large: almost all genes in the DE-set of a method that classifies less genes as DE are

also included in the DE-set of methods that classify more genes as DE. Comparing the gene

rankings, edgeR classic, DESeq, limmaVoom, limmaVst and SAMSeq give similar rankings,

while baySeq gives a considerably different ranking.

Zhou et al. compare performance of edgeR glm, edgeR robust, DESeq, DESeq2, lim-

maVoom, EBSeq and ShrinkBayes. They do their simulation based on the Pickrell dataset

(Pickrell et al., 2010) with 5+5 samples, 10% symmetric DE genes, a fold difference 3 for

the DE genes, with and without 10% outliers generated by the ‘simple’ outlier generating

mechanism. They find that the introduction of outliers results in more false positives and

lower power at the same nominal FDR. In the absence of outliers, edgeR glm, edgeR robust

and DESeq2 have a small advantage in power at the 5% FDR. In the presence of outliers,

edgeR robust performs better than the other methods and DESeq experiences the strongest

drop in power. Looking at the DE genes with outliers separately, they find that robust edgeR

clearly outperforms the other methods in terms of power and in particular DESeq2 which

seems to suffer form its hard threshold. Considering FDR control, the authors must admit

that edgeR glm and edgeR robust do not meet the target FDR, while limma-voom controls

the FDR well. They argue however that edgeR glm, edgeR robust, DESeq2 and limma-voom

achieve similar power-to-achieved-FDR tradeoffs across sample sizes with a slight advantage

for edgeR robust if outliers are present and with an advantage for DESeq2 for smaller fold

changes.

Love et al. perform a simulation study that is similar to the one of Zhou et al.. It is also

based on the Pickrell dataset but uses different parameter settings (varying number of sam-

ples, 20% symmetric DE genes, fold changes of 2, 3 and 4 and a nominal FDR of 10%). The

authors emphasize that DESeq2 often has the highest power of the algorithms that control

the FDR in the sense that the actual FDR is at or below the nominal FDR. In addition

they state that DESeq2 estimates fold changes more precisely than edgeR 2 in that it con-

2It is not fully clear if Love et al. refers to edgeR glm or edgeR robust here
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sistently has a lower low root-mean-square error. Besides benchmarking through simulation,

the authors also performed benchmarking on real datasets. Power and FDR were assessed by

splitting a large dataset into an evaluation set and a larger verification set and compare the

calls from the evaluation set with the calls from the verification set which were taken as the

truth. We won’t further discuss these results, as we think that calls from the verification are

not necesseraliy a good approximation of the true differential state.

Law et al. find in their nullsimulation that their limmaVoom method most accurately

controls the type I error rate. In their simulation with DE genes, they use a rather low

fraction of DE genes (2%) and a moderate fold change of 2. They find that limmaVoom

has the best power of the methods that control the false discovery rate, both in the case of

equal and unequal library sizes. In terms of gene ranking, limmaVoom achieves the lowest

FDR at any cutoff, followed by edgeR classic and edgeR glm in case of unequal library sizes

and by PoissonSeq in case of equal library sizes. Liu et al. compare performance between

limmaVoom with and without quality weights in case of sample level variability. In the absence

of variability at sample level, limmaVoom and limmaVoom with quality weights have similar

performance. However, in case of substantial sample variability, limmaVoom with quality

weights successfully down-weighs samples with higher variability and achieves a higher power

and a lower FDR than limmaVoom without quality weights.



Chapter 2

Data & Methodology

2.1 Overall approach, goals and scope

The research of this master thesis was conducted in cooperation with Janssen Pharmaceu-

ticals (referred to as Janssen in the remainder of this work). Key purpose is to compare

and evaluate differential gene expression analysis methods for RNA-seq data, with a focus

on methods that are available in R. Our research consists of two pillars each of which have

their own goals.

The first part consists of a concordance analysis that should help to understand simi-

larities and dissimilarities between DE methods. In this part of the research the selected

methods are applied on both publicly available and in-house Janssen data. The different

datasets reflect a variety of settings in which DE analysis is applied. The outputs of the

different methods are then compared in order to evaluate which methods are more alike than

others in terms of the set of DE genes, the ranking of the genes and the estimated fold changes.

In addition, we analyze the top 100 of most significant genes to see if some methods are more

likely than others to classify specific types of genes as DE.

The second part consists of a simulation study that aims to empirically assess the perfor-

mance of the different methods. While the concordance analysis allows to make statements

on how methods differ from each other, these analyses do not allow to make statements on

which method is better than the others. Therefore we resort to a simulation study. We gen-

erate a number of count datasets according to a model that reflects a real dataset as well as

possible. As such we can control which genes are differentially expressed and which are not.

By comparing the output of each DE method with the underlying truth of the model, we are

then able to assess how well each method classifies the genes as DE or non-DE. We evaluate

each method according to multiple criteria and we investigate how performance depends on a

number of relevant parameter settings, namely the fraction of DE genes, symmetric or asym-

21
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metric expression, the number of samples, the fraction of outliers, the size of the fold change

and the average count.

In both parts of our research, we limit the scope to a setting with two conditions. All analyses

are run on a Windows 7 64-bit computer with 8GB RAM and an Intel(R) Core(TM) i7-4600U

CPU @ 2.10Ghz, in R version 3.1.2 (2014-10-31) ‘Pumpkin Helmet’.

2.2 Datasets

The concordance analysis has been run on a number of datasets of which one in-house

Janssen dataset and four publicly available datasets. A summary of the datasets is given in

Table 2.1 and some more context is given below:

- The CRC AZA dataset is an in-house Janssen dataset. It includes data on 2x3 bi-

ological replicates of colorectal cancer cell lines (HCT-116): three controls and three

which have been treated with Azacytidine. As Azacytidine is an inhibitor of methyl-

transferase, it impacts transcription regulation. Azacytidine is an aspecific drug such

that a global response can be expected.

- Bottomly et al. (2011) uses both RNA-seq data and microarray data to detect dif-

ferential gene expression between the C57BL/6J (B6) and DBA/2J (D2) mouse strains,

two of the most commonly used inbred mouse strains in neuroscience research. The

study evaluates concordance of the RNA-Seq results with the result of two microarray

platforms. The RNA-seq count dataset includes 10 biological replicates of the B6 strain

and 11 biological replicates of the D2 strain.

- Hammer et al. (2010) performs RNA-seq on the L4 dorsal root ganglion (DRG)

of rats with chronic neuropathic pain induced by spinal nerve ligation (SNL) of the

neighboring (L5) spinal nerve to demonstrate its potential for in vivo transcriptomics

in the nervous system. They use count data of 2x2 biological replicates: two controls

and two with L5-SNL induced chronic neuropathic pain.

- The GTEx project, which stands for the Genotype-Tissue Expression project, pro-

vides a large dataset with gene expression data of both RNA-seq and microarrays. More

than 3000 RNA-seq samples of in total 54 different tissues are included. For our research,

we randomly selected 2x10 biological replicates of the Hippocampus and Hypothalamus.

- Rapaport et al. (2013) uses samples from two sources that are part of the SEQC

(RNA sequencing quality control) study, each generated from a mixture of biologi-

cal sources and a set of synthetic RNAs from the External RNA Control Consortium

(ERCC) at known concentrations. The first group contains the Strategene Universal

Human Reference RNA (UHRR), the second group contains Ambion’s Human Brain

Reference RNA (HBRR). The samples in both groups are mixed with 2% by volume of
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respectively ERCC mix 1 and ERCC mix 2. The ERCC mixtures in both groups con-

tain concentrations of four subgroups of in total 92 synthetic genes. The log expression

change of these spike-in genes is predefined, such that they can be used to benchmark

DE performance. For each group, there are five technical replicates (of which the first

four were prepared by a single technician and the last one by Illumina).

Dataset Type Cond A Cond B Replicates

(A+B)

Replicate

type

CRC AZA Janssen in-house Control Treated with AZA 3+3 biological

Bottomly Public B6 mouse strain D2 mouse strain 10+11 biological

Hammer Public Control L5 SNL 2+2 biological

GTEx Public Hippocampus Hypothalamus 10+10 biological

Rapaport Public Universal Human Refer-

ence RNA

Human Brain Refer-

ence RNA

5+5 technical

Table 2.1: Overview datasets concordance analysis

These datasets reflect the variety of settings in which RNA-Seq is used in terms of:

- The type of conditions:

- Comparison of a single tissue in two different populations: non-treated vs. treated

(CRC AZA), non-diseased vs. diseased (Hammer) or different strains (Bottomly)

- Comparison of different tissues in one population: GTEx and Rapaport

- The type of replicates: biological vs. technical replicates (see also Section 1.2.2)

The setting is related to both between-condition and within-condition variability of the sam-

ples. To get an insight in the between-condition and within-condition variability, two types of

plots are constructed: a multidimensional scaling (MDS) plot of the samples and a plot of the

biological coefficient of variation (BCV) against gene abundance (in log2 counts per million).

The MDS-plots, which are constructed by means of a built-in procedure in edgeR, visual-

ize for each dataset the distances between the gene expression profiles in a two-dimensional

space. For its construction, counts are converted to log counts per million (log cpm) and

the Euclidean distances between the samples are calculated based on the 500 genes that are

most distinguishing between the samples. From the MDS-plots (Figure 2.1 a-c-e-g-i) we can

see that the replicates of the different conditions are well separated for each dataset. The

plots showing the biological coefficient of variation versus the log average expression are based

on the dispersion estimates as produced by the edgeR robust procedure. These BCV-plots

(Figure 2.1 b-d-f-h-j) indicate that the Bottomly and the GTEx dataset are characterized by

higher biological variability relative to the other datasets.

The simulation analysis is based on simulated datasets that try to mimic the CRC AZA

dataset. A detailed explanation of how the simulation was set up is given in Section 2.4.
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(a) CRC AZA - MDS plot (b) CRC AZA - BCV vs. log CPM

(c) Bottomly - MDS plot (d) Bottomly - BCV vs. log CPM

(e) Hammer - MDS plot (f) Hammer - BCV vs. log CPM

(g) GTEx - MDS plot (h) GTEx - BCV vs. log CPM

(i) Rapaport - MDS plot (j) Rapaport - BCV vs. log CPM

Figure 2.1: MDS-plot and BCV-plot by dataset. In the MDS-plots A and B indicate two different conditions.

The MDS-plots show that the replicates of the different conditions are well separated for each dataset. The

BCV-plots indicate higher biological variability for the Bottomly and GTEx datasets relative to the other

datasets.
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Two final remarks need to be made on the way we treated these datasets. First, while most

count datasets were originally at the level of the ensembl gene ID, we preferred to do the DE

analyses at the level of the external gene ID as this allows an easier biological inter-

pretation of the results afterwards. A small minority of external gene IDs matched multiple

ensembl gene IDs. For these external gene IDs the counts of the multiple corresponding en-

sembl gene IDs were added up. Second, a pre-filtering of the genes was done. Only protein

coding genes were kept as the RNA-seq datasets were prepared using polyA capture and the

primary focus of this method is mRNA. In the remainder of this document, when we talk

about RNA-seq we actually refer to mRNA-seq. In addition, of these protein coding genes

only these genes with an average count larger than 1 were retained for the final dataset on

which DE analysis was applied.

2.3 Concordance Analysis

2.3.1 Methods used

There are many different methods for RNA-seq analysis. As discussed in Section 1.3, we limit

ourselves to the most frequently used ones: edgeR, DESeq(2), limma, baySeq and PoissonSeq.

Cuffdiff which is another frequently used method is not included because it is not available

in R. On the other hand, we include SAMSeq to also have a non-parametric method in our

set of methods tested. A discussion of the theory behind each method is given in Section 1.3.

Here we only list the version of the software packages and the parameter settings used:

- edgeR (v.3.8.6): we use three variants, each time applying the default parameter

settings. First, we use the original variant that uses an exact test to test for DE (edgeR

classic). Second, we apply the variant developed to deal with multifactor designs and

that uses a likelihood ratio test (edgeR glm). Third, we use the extension of edgeR glm

that was developed to deal with outliers (robust edgeR).

- DESeq (v.1.18.0): the dispersion estimate call estimateDispersions is used with

its default parameter values sharingMode="maximum", method="pooled" and fitType=

"parametric". These default values are different from the default values in earlier

DESeq versions and also differ from the parameter settings used by Rapaport et al. and

Soneson and Delorenzi.

- DESeq2 (v.1.6.3): the default parameters are used which implies a parametric fit to

estimate dispersions. This more recent version of DESeq was not available yet at the

publication of Rapaport et al. and Soneson and Delorenzi.

- limma (v.3.22.7): four limma-based variants are used, which differ in the way how

they transform the count data. limmaQN uses the normalizeBetweenArrays func-

tion with method="quantile" to perform a quantile normalization on the log2 trans-

formed gene counts. limmaVoom and limmaVoom with quality weights respectively use
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the voom and voomWithQualityWeights functions. While the original limmaVoom ap-

proach used a total count normalization, the current default is to use TMM. limmaVst

employs the variance stabilizing transformation (with parameters fittype="local" and

method="blind") provided by the DESeq package.

- baySeq (v.2.0.50): contrary to Rapaport et al., but in line with Soneson and Delorenzi

baySeq is applied without sequence length correction and with TMM normalization.

NB parameter estimation is done assuming equal dispersions and using quasi-likelihood

estimation. It needs to be mentioned that baySeq does not report p-values. Instead we

use the posterior probability of the DE model to classify genes as DE or non-DE. If in

the remainder of this document we compare adjusted p-values between methods, we use

these posterior probabilities for baySeq.

- PoissonSeq (v.1.1.2): no minimum for the total number of reads across samples is

applied and the number of permutations is set to 500.

- SAMSeq (v.2.0): we use the default parameter values. In contrast to Love et al.

(2014) who performs a Benjamini Hochberg correction of the p-values, but in line with

Zhou et al. (2014), we classify the genes based on their q-value which can be considered

as the adjusted p-value.

2.3.2 Analysis

Once the different methods are run on the dataset of interest, we compare the results to

understand similarities and dissimilarities between the methods.

First, we look into the number of genes that have been classified as DE by each of the

methods at an FDR of 5% and we check which methods classify most or least genes as DE

across the datasets.

Subsequently, we compare MA-plots and volcano plots to see if we can observe any mean-

ingful differences between the methods. MA-plots plot the estimated LFC (M) between two

conditions vs. the average expression level (A), with a color code indicating the method’s

classification of the gene (DE vs. non-DE). Volcanoplots plot the adjusted p-value vs. the

estimated LFC, again with a color code for the method’s classification.

Afterwards, the overlap in the set of DE genes is compared by means of a pairwise over-

lap table. This table is also visualized by means of an MDS-plot. Here, the MDS-plot is

constructed based on the chi-square distances of the pairwise overlap table. In addition, we

plot the adjusted p-values (or the posterior probabilities for baySeq) of the different methods

versus each other to assess similarity of the methods in terms of gene ranking by significance.

For each combination of methods, the degree of similarity in the ranking of the genes is ex-

pressed as a Spearman rank correlation coefficient. As we are primarily interested in the
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most significant genes, we zoom in on these genes by making a scattermatrix of the -log10

transformed adjusted p-values of all genes. A pairwise overlap table of the top 100 most

significant genes completes our view on the degree of correspondence between the methods

for the most significant genes. A methodological side note here is that if ties occur in the

smallest p-values, the genes are taken in the order they are returned by the method.

Besides assessing to which extent the methods return the same set of (top) DE genes, we

also want to understand similarities in the estimated LFC-values. Again we construct a

scatter matrix and calculate a correlation coefficient between the estimated LFCs for each

combination of methods. This time we use the Pearson correlation coefficient as we do expect

to see a linear relationship between the estimated LFCs.

Finally, we perform an explorative analysis to see whether some methods classify par-

ticular genes more easily as DE compared to other methods. To that extent we plot the

normalized counts per condition and per sample of the top 3 most significant genes for each

of the methods. To ensure consistency in the graphs, we use a total count normalization for

all methods (rather than using the normalized counts as calculated by the method’s default

normalization function). Besides these graphs, we also calculate some key metrics for the top

100 most significant genes:

- the number of top 100 genes with low counts in one of the conditions: to check if some

methods are more likely than others to classify genes with very low expression in one

condition as DE. Low count in a condition has been defined as an average normalized

count in the condition of less than 5.

- the number of top 100 genes with a dispersion factor that is in the upper quartile of the

dispersions of all genes: to check if some methods are more likely than others to classify

genes with high dispersions as DE.

- the number of the top 10 most expressed genes included in the top 100 most significant

genes: to check if some methods are more likely than others to classify genes with the

highest average counts as DE.

A watch out is again that if there are ties in the smallest p-values, we just take the genes in

the order they are returned by the respective method. To have a feel of the size of the issue,

we report for each dataset and for each method the number of unique p-values in the top 100

most significant genes.

2.4 Simulations

2.4.1 Settings

For the simulations we start from the flexible framework offered by Zhou et al. (2014),

which we then further adapt to facilitate our own needs. For a pre-specified number of genes
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and samples, counts are simulated according to a negative binomial distribution. In order to

mimic real data as well as possible, a real count dataset serves as the basis to generate both

the library sizes and the parameters of negative binomial distribution. The library sizes are

generated following a uniform distribution over the interval between 70% and 130% of the

median library size of the real dataset used. Then for each gene the parameters of the NB

are set by sampling from the joint distribution of the estimated log-cpm and dispersion of the

real count dataset (of which the 10% genes with most extreme dispersion have been removed

though). Subsequently, a pre-specified percentage of these genes is randomly sampled to serve

as DE genes. For these genes, the mean parameter of the NB distribution is adapted in both

conditions, to ensure that the LFC between the two conditions takes a pre-specified value,

while the average count of the gene remains unchanged. Then for each gene and each sample

a count is generated according to the NB distribution. Finally, a pre-specified percentage of

outlier genes is introduced in the dataset that was simulated as such.

A large number of parameters can be adapted to ensure performance of the methods can

be tested across a variety of conditions. These parameters can be grouped in 3 categories:

- Parameters related to general characteristics of the simulation: the number of simulated

datasets, the number of features, the number of experimental conditions, the number

of samples per experimental conditions and the underlying dataset which is used for

determining the mean-dispersion relationship

- Parameters related to differential expression: the proportion of DE features, the direc-

tion of differential expression and the relative expression level of truly DE features

- Parameters related to outliers: the proportion of outliers, the magnitude of the outlying

observations and the outlier mechanism

We only manipulate a subset of these parameters:

- The proportion of DE genes (pDiff) takes values of 1%, 5%, 20% and 70%

- The proportion of DE genes that is upregulated (pUp) is set to 50% and 70%

- The proportion of outliers (pOutlier) takes values of 0%, 5% and 10%

- The number of samples per condition is set to 3, 5 and 7

We will always vary one parameter at a time and compare to the baseline (parameter settings:

5+5 samples, pDiff=5%, pUp=50%, pOutlier=0%).

The other parameters we keep fixed over the different simulations:

- For each set of parameter values, we generate 20 simulated datasets

- The number of features is set to 10,000

- The number of conditions is kept at two

- The CRC AZA dataset is used as the underlying dataset for the simulations
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- For the absolute LFCs of the truly DE genes, we use a rescaled beta-distribution. This

approach is discussed in more detail below

- For the outlier mechanism we always use the ‘simple’ method (S). In this method a gene

is chosen at some probability to have a single outlier randomly added. Other outlying

generating mechanisms are described in Zhou et al.

- Counts are multiplied by a random factor between 1.5 and 10 for outlier genes

The most important difference of our approach versus the Zhou et al. approach is the way

the relative expression levels of truly DE genes are modeled. Zhou et al. randomly

samples a certain percentage of genes that will serve as DE genes in the simulated dataset.

For these genes, the mean parameter of the NB distribution in both conditions is modified

so as to impose a certain LFC which is the same for all DE genes. We do the same, but

instead of using the same LFC for all DE genes, we sample the LFC for each DE gene from

a distribution as we believe this better approaches reality. To this extent, we use a rescaled

beta-distribution with shape parameters such that the absolute LFC of the truly DE genes

shows an exponential-like form between a lower bound LFCmin = log2(1.5) and an upper

bound LFCmax = 4 with mean LFCmean = 1 and 95% quantile LFC95p = 2. This is il-

lustrated in Figure 2.2. Note that the user can easily choose alternative values for LFCmin,

LFCmax, LFCmean and LFC95p.

Figure 2.2: Distribution true LFC of DE genes for a dataset with an equal percentage of upregulated and

downregulated genes - A certain percentage of genes is randomly sampled to serve as DE genes. The LFC of

these DE genes is sampled from the rescaled beta-distribution depicted above.

For real datasets the distribution of the estimated LFC is usually a unimodal curve with the

maximum very close to zero. When using a single value for the absolute LFC of the truly

DE genes, the distribution of the estimated LFCs quickly becomes multimodal. With our

approach the distribution of the estimated LFC only starts to deviate from the expected form

for extreme values of pDiff. This is illustrated in Figure 2.3. Note that with our approach
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the effect of the LFC can be assessed within a single simulation, rather than doing different

simulations for different values of the fold change.

(a) 1% DE genes (b) 5% DE genes

(c) 20% DE genes (d) 70% DE genes

Figure 2.3: LimmaVoom estimated LFC distribution for different fractions of DE genes (5-5 samples, pUp=0.5,

no outliers) in case a single value is used for the true LFC of the DE genes (Zhou et al. approach) and in

case the LFC of the DE genes is drawn from the distribution in Figure 2.2 (our approach). When using a

single value for the LFC of the DE genes, we already see a multimodal distribution of the estimated LFC for

relatively small fractions of DE genes.

A second difference with the Zhou framework is that we compare a different set of methods.

The Zhou framework can easily be extended with new methods or variations of existing ones

by writing simple wrapper functions with the correct inputs and outputs. We wrote wrapper

functions with exactly the same settings for the methods described in Section 2.3.1. Note that

we dropped baySeq from the simulations because of the method’s high computation time, as

illustrated by Figure 2.4 which shows the computation time by method for the CRC AZA

dataset.

2.4.2 Performance analysis

The performance of each DE method under varying conditions was assessed using a number

of standard metrics:

- The False Discovery Rate (FDR) expresses the proportion of incorrect null hypothe-

sis rejections (‘false discoveries’) versus the total number of null hypothesis rejections.

FDR-control provides less stringent control of false positives compared to the familywise

error rate (FWER). In the ideal scenario, a method has a true FDR that coincides with

the nominal FDR, which we set at 5%.

- The False Positive Rate (FPR) expresses the proportion of non-DE genes for which the

null hypothesis is incorrectly rejected at a certain predefined nominal FDR. It provides
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Figure 2.4: Elapsed time by method for analyzing the CRC AZA dataset; Running baySeq on the CRC AZA

dataset takes 34 minutes, which is almost 17 times longer than DESeq, the method with the second longest

run time.

an alternative view on the number of false positives. While the DE methods are designed

to control the FDR, they do not directly control the FPR.

- The Power is empirically estimated by means of the true positive rate (TPR) which

expresses the proportion of truly DE genes that are detected as such at a certain pre-

defined nominal FDR.

- The area under a Receiver Operating Characteristic (ROC) curve (AUC) expresses the

methods’ ability to rank truly DE genes ahead of non-DE genes.

As some genes are excluded from analysis by some of the methods, we assigned these genes

an adjusted p-value of 1 so as to be able to calculate the above metrics for exactly the same

set of genes for all methods. Per metric, per set of conditions and per method, a boxplot

was created showing the values of the metric for the simulated datasets. We will see that all

methods involve a trade-off between power and FDR. As not all methods control the FDR

equally well, assessing the power of the methods for a given nominal FDR is not always a fair

comparison. From this perspective, we will also plot for each method the trade-off between

the power and the true FDR. An alternative visualization of the methods’ ability to rank

truly DE genes ahead of non-DE genes has been included under the form of a FDR-curve

depicting the number of false detections encountered when going through the list of genes

ranked according to their adjusted p-value.
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Whereas the above metrics help assess the methods’ ability to correctly classify genes as DE

or non-DE, they don’t capture how well the methods estimate the LFC. To assess this

dimension of the methods’ performance, we calculate for each method the average bias which

is the average difference between the estimated and the true LFC, and the root mean squared

error (RMSE) which expresses the sample standard deviation of the prediction errors. In

addition, the relation between the estimated and the true LFC for each method and per level

of the average count has been visualized by means of a scatterplot. The analysis is done once

for all genes and once for outlier genes only.



Chapter 3

Results & Discussion

The full set of outputs of both the concordance analysis and the simulations is included in the

separate document ‘Supplementary figures and tables’. In this chapter we will only show the

most insightful figures and tables. For the concordance analysis, we will mainly focus on the

outputs of the CRC AZA dataset. For the simulations we focus on the simulation run with

5 samples in each condition, 5% DE genes, a symmetric DE pattern, both with and without

5% outlier genes. Where needed we will refer to the figures and tables in the ‘Supplementary

figures and tables’ document, indicating these outputs with a prefix ‘S’.

3.1 Concordance analysis

By comparing the outputs of the different DE methods for several real RNA-seq datasets,

we try to get an understanding which DE methods are more alike than others in terms of

the set of DE genes, the ranking of the genes by adjusted p-value and the estimated fold

changes. Looking at the number of genes that are classified as DE by each of the

methods at a nominal FDR of 5%, we see that DESeq and baySeq and to a lesser extent

limmaQN return less DE genes compared to each of the other methods. This is shown for the

CRC AZA dataset in Figure 3.1. The conservative behaviour of DESeq and baySeq, which

has also been observed by Soneson and Delorenzi, is even more outspoken for the Bottomly

dataset (Figure S16) and for the GTEx dataset (Figure S40), two datasets that are character-

ized by higher biological variability and a higher number of replicates compared to the other

datasets. While limmaVoom with quality weights classifies way more genes as DE compared

to the other methods for the CRC AZA dataset, this is not the case for the other datasets.

Table 3.1 shows that for the Bottomly, Hammer and Rapaport datasets, SAMSeq classifies

most genes as DE relative to the other methods and for the GTEx Dataset DESeq2 is most

liberal. Probably the most important key takeaway from this table is the high spread in the

number of genes classified as DE by the different methods. For the Rapaport and GTEx

dataset, the ratio of the number of DE classified genes between the most liberal and most

conservative method amounts to values larger than 3.

33
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Figure 3.1: Number of genes detected as DE by method at a nominal FDR of 5% for the CRC AZA dataset -

DESeq and baySeq classify less genes as DE compared to the other methods

Dataset Least DE Most DE Ratio Most/Least

Method Number DE Method Number DE

CRC AZA baySeq 3809 limmaVoom QW 5988 1.57

Bottomly baySeq 506 SAMSeq 1894 3.74

Hammer limmaQN 4416 SAMSeq 10392 2.35

GTEx DESeq 788 DESeq2 2461 3.12

Rapaport DESeq 14644 SAMSeq 16554 1.13

Table 3.1: Number of DE genes by dataset for the most conservative and the most liberal method at a nominal

FDR of 5% - the number of genes classified as DE can vary considerably between methods

A few things can be learned from comparing the MA-plots of the different methods. Here,

we only include the MA-plot (Figure 3.2) of the Bottomly dataset, for the other datasets we

refer to Figures S5 (CRC AZA), S29 (Hammer), S41 (GTEx) and S53 (Rapaport). For most

methods we see the familiar trumpet-shape form in the MA-plots. A first exception is SAM-

Seq which consistently displays two ‘tails’ with extreme estimated LFCs for a number of low

count genes. A second exception is the MA-plot of the DESeq2 and limmaVst methods. For

these methods, the strongest LFCs are no longer exhibited by genes with the lowest expres-

sion. For DESeq2, the reason is that the MLE-estimates for the LFC are shrunken towards

zero by means of an empirical Bayes procedure. The variance stabilizing transformation of

limmaVst seems to have a similar effect. Other often used plots are volcano plots. We don’t

discuss them in detail here, but they are included as Figures S6, S18, S30, S42 and S54 in the

supplementary materials.
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(a) edgeR classic (b) edgeR GLM (c) edgeR robust

(d) DESeq (e) DESeq2 (f) limmaQN

(g) limmaVoom
(h) limmaVoom with quality

weights
(i) limmaVst

(j) baySeq (k) PoissonSeq (l) SAMSeq

Figure 3.2: MA-plots by method for the Bottomly dataset; Red points indicate genes with an adjusted p-

value<0.05, black points indicate genes with an adjusted p-value≥0.05; Small triangles at the side of the

plotting window indicate points that would fall outside the plotting window. The dashed grey lines indicate

the values +1 and -1 for the LFC.
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Next we look into the overlap in the set of DE genes as returned by the different methods.

Here we see two types of patterns occurring. We illustrate them on the Hammer and Bot-

tomly datasets as these datasets most clearly contrast the two patterns observed and also have

the highest percentage of variance explained for their MDS-plots. Tables 3.2 and 3.3 show

the pairwise overlaps in the DE genes for each combination of methods for these datasets.

Figure 3.3 and 3.4 visualize these overlap tables by means of an MDS-plot which is based

on a chi-square distance measure. The overlap tables and the MDS-plots of the CRC AZA

dataset and the Rapaport dataset are similar to those of the Hammer dataset and are given

by Tables S-1, S-13 and Figures S-7, S-55 respectively. The picture for the GTEx dataset is

similar to the one of the Bottomly dataset and is given in Table S-10 and Figure S-43.

First and most importantly, we see there is good overlap between the methods: the vast

majority of genes that are included in the DE-set of one method are also included in the

DE-set of any other method. Second, SAMseq appears to be most different from the other

methods. Part of this is driven by the fact that SAMSeq in general classifies more genes as

DE compared to the other methods. However, in the CRC AZA dataset the number of genes

classified as DE by SAMSeq is in line with the other methods, still it appears in isolation on

the MDS-plot because it has a lower overlap with the other methods. The relative position of

the other methods shows two different patterns according to the dataset. For the Hammer,

CRC AZA and Rapaport datasets, limmaQN is positioned further away from the other meth-

ods, indicating it shows somewhat less overlap with the other methods. The other methods

are grouped together with some subgrouping by family of methods: edgeR classic, glm and

robust give very similar results, the same holds for DESeq and DESeq2 and for LimmaVoom

and LimmaVoom with Quality Weights. For the Bottomly and GTEx datasets, the picture

is slightly different. There DESeq and baySeq are clearly separated from the other methods,

obviously because their conservative character is very much outspoken for these datasets.

LimmaQN is now much closer to limmaVoom and limmaVst. edgeR robust, DESeq2 and

limmaVoom with quality weights tend to cluster together.
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edgeR classic 6701 6677 6690 5321 5316 3995 6051 6069 5285 4656 6560 6688

edgeR glm 6677 6825 6823 5328 5317 4036 6090 6109 5348 4656 6664 6795

edgeR rob 6690 6823 7009 5343 5331 4047 6149 6173 5356 4656 6765 6975

DESeq 5321 5328 5343 5361 5112 3638 5290 5295 4719 4403 5295 5361

DESeq2 5316 5317 5331 5112 5358 3570 5188 5202 4620 4298 5274 5356

LimmaQN 3995 4036 4047 3638 3570 4416 3944 3937 4138 3688 4130 4245

LimmaVoom 6051 6090 6149 5290 5188 3944 6173 6123 5150 4648 5976 6172

LimmaVoom QW 6069 6109 6173 5295 5202 3937 6123 6201 5159 4652 5999 6200

LimmaVst 5285 5348 5356 4719 4620 4138 5150 5159 5551 4549 5499 5509

BaySeq 4656 4656 4656 4403 4298 3688 4648 4652 4549 4656 4646 4656

PoissonSeq 6560 6664 6765 5295 5274 4130 5976 5999 5499 4646 7684 7426

SAMSeq 6688 6795 6975 5361 5356 4245 6172 6200 5509 4656 7426 10392

Table 3.2: Overlap DE genes between methods at nominal FDR of 5% for the Hammer dataset. The numbers

on the diagonal indicate the number of DE genes found by the respective methods, the numbers off-diagonal

show the number of DE genes that are shared between each pair of methods
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edgeR classic 1222 1208 1198 604 1163 975 998 1095 1040 504 854 1186

edgeR glm 1208 1245 1224 604 1173 984 1009 1117 1041 504 854 1199

edgeR rob 1198 1224 1550 604 1234 1013 1033 1275 1070 505 883 1395

DESeq 604 604 604 604 604 584 597 600 596 463 601 603

DESeq2 1163 1173 1234 604 1329 974 1003 1151 1051 504 847 1297

LimmaQN 975 984 1013 584 974 1029 936 959 985 501 726 1009

LimmaVoom 998 1009 1033 597 1003 936 1036 1010 972 504 765 1024

LimmaVoom QW 1095 1117 1275 600 1151 959 1010 1401 1017 505 853 1301

LimmaVst 1040 1041 1070 596 1051 985 972 1017 1090 503 780 1082

BaySeq 504 504 505 463 504 501 504 505 503 506 489 505

PoissonSeq 854 854 883 601 847 726 765 853 780 489 961 880

SAMSeq 1186 1199 1395 603 1297 1009 1024 1301 1082 505 880 1894

Table 3.3: Overlap DE genes between methods at nominal FDR of 5% for the Bottomly dataset. The numbers

on the diagonal indicate the number of DE genes found by the respective methods, the numbers off-diagonal

show the number of DE genes that are shared between each pair of methods



Chapter 3. Results & Discussion 38

Figure 3.3: MDS plot DE overlap between methods for Hammer dataset - Construction of the MDS-plot is

based on the chi-square distance. The variance explained in the plot is 83%.

Figure 3.4: MDS plot DE overlap between methods for Bottomly dataset - Construction of the MDS-plot is

based on the chi-square distance. The variance explained in the plot is 81%.
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Subsequently we investigate the relationship between the adjusted p-values as generated

by the different methods. Figure 3.5 gives the Spearman rank correlations between the

adjusted p-values for each pair of methods. The scatterplots plot the −log10 transformed

adjusted p-values of the methods versus each other. The monotone transformation does not

impact the Spearman rank correlations, but it allows to zoom in on the smallest p-values.

Similar figures have been produced for the other datasets: S22 (Bottomly), S34 (Hammer),

S46 (GTEx) end S58 (Rapaport).

Overall, we see that the ranking of the genes is very similar between the methods. For the

CRC AZA and Hammer datasets, SAMSeq and limmaQN are the exceptions with consider-

ably lower Spearman rank correlations. This confirms the conclusions we drew based on the

MDS-plots. The Rapaport dataset leads to similar conclusions, but the lower correlation of

limmaQN with the other methods is now a bit less outspoken. For the Bottomly and GTEx

datasets, baySeq has the lowest rank correlation with the other methods. Note that for all

datasets, the relation between the −log10 transformed adjusted p-values of baySeq, Poisson-

Seq and SAMSeq with the other methods might look a bit strange. For these methods, the

adjusted p-values (or posterior probabilities for baySeq) are based on either resampling from

the data or performing permutations. As such, the adjusted p-values of these methods go to

zero in a less ‘gradual’ manner compared to the other methods.
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Figure 3.5: Scatter matrix −log10 adjusted p-values between methods for the CRC AZA dataset. Because of

the transformation, the smallest p-values are displayed in the upper right corner of each scatter plot. The

correlations above the diagonal are Spearman rank correlations. limmaQN and SAMSeq have the lowest rank

correlation with the other methods.
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The overlap of the top 100 most significant genes is a different way of analyzing whether

the different methods have a similar ranking of the genes by significance. However, this time

we only include the 100 most significant genes instead of the full set of genes. Table 3.4 shows

the pairwise overlap in the top 100 most significant genes for the CRC AZA dataset (similar

tables for the other datasets are given by S5, S8, S11 and S14). For the CRC AZA dataset,

the edgeR and DESeq variants return almost exactly the same set of 100 most significant

genes, while the overlap of these methods with the limma-based methods, baySeq and Pois-

sonSeq is lower but still in the range of thirty to seventy genes. For the Hammer, Bottomly

and GTEx datasets the overlap between the edgeR variants and the DESeq variants is still

high but already further away from perfect overlap, while the overlap between these methods

with the other methods (except SAMSeq) is higher. At first sight, it seems like SAMSeq is

the method that overlaps the least with the other methods in terms of the 100 most signifi-

cant genes. It needs to be noted however that this is at least partly driven by the fact that

SAMSeq is characterized by large ties in the lowest p-values. For all datasets, 500 to 5000

genes correspond with the lowest SAMseq p-value. As a result, if we just take the first 100

genes of the complete list of genes that correspond with this lowest adjusted p-value, the

overlap with the other methods whose adjusted p-value better allows to discriminate the top

100 most significant genes is limited. For the same reason the Rapaport dataset is less suited

to compare overlap of the top 100 most significant genes. There are so many DE genes in this

dataset and the differential expression is so outspoken that for many of the methods there

are many more than 100 genes for which the adjusted p-value is zero (or at least smaller than

the smallest positive integer different from zero that can be read by our machine). Further

research is needed to compare the overlap in the set of most significant genes if we increase the

size of this set to 200, 300 etc. genes. For us the most important takeaway is that for SAM-

Seq, the adjusted p-value is insufficient to differentiate the most differentially expressed genes.

In terms of LFC estimation (Figure 3.6), the relationship between the estimated values is

close to the identity line for most combinations of the methods. DESeq2 and limmaVst form

exceptions on this general rule. When plotting the estimated LFC for these latter methods

versus the other methods, the cloud of points seems to be located between the identity line

and the x-axis (when DESeq2 or limmaVst is put on the y-axis). This is another illustration

that overall DESeq2 and limmaVst tend to estimate lower values for the LFC compared to

the other methods. Another exception is SAMSeq for which the cloud of points seems to

follow three parallel lines. The lines parallel with the identity line correspond to the extreme

LFC-estimates for some of the low count genes we observed earlier in the MA-plots. limmaQN

is also less correlated with the other methods for the CRC AZA dataset, but this is less the

case for the other dataets. The estimated LFC scattermatrices for the other datasets can be

found in Figures S23, S35, S47 and S59.
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edgeR classic 100 99 97 90 93 36 58 61 53 74 39 1

edgeR glm 99 100 98 90 92 37 58 62 54 75 40 1

edgeR rob 97 98 100 90 91 37 59 63 54 77 41 1

DESeq 90 90 90 100 85 37 61 65 54 79 41 1

DESeq2 93 92 91 85 100 35 61 64 50 70 42 1

LimmaQN 36 37 37 37 35 100 58 40 78 48 31 4

LimmaVoom 58 58 59 61 61 58 100 75 72 60 40 2

LimmaVoom QW 61 62 63 65 64 40 75 100 56 61 37 1

LimmaVst 53 54 54 54 50 78 72 56 100 62 31 3

BaySeq 74 75 77 79 70 48 60 61 62 100 37 3

PoissonSeq 39 40 41 41 42 31 40 37 31 37 100 2

SAMSeq 1 1 1 1 1 4 2 1 3 3 2 100

Table 3.4: Overlap top 100 most significant genes for the CRC AZA dataset. The numbers off-diagonal indicate

the number of the top 100 most significant genes that are shared between each pair of methods. The low values

for SAMSeq are at least partly driven by the large ties in the SAMseq adjusted p-values

Figure 3.6: Scatter matrix estimated LFC between methods for the CRC AZA dataset. The correlations above

the diagonal are Pearson correlations. DESeq2, limmaQN, limmaVst and SAMSeq are less correlated with the

other methods.
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For each of the datasets the normalized counts per sample and per condition have been

visualized for the top 3 most significant genes (Figures S12, S24, S36, S48, S60). In order

to better understand which methods are more likely to classify which type of genes as DE,

Summary Table 3.5 which includes some key metrics on the top 100 most significant

genes for each of the methods and each of the datasets, has been constructed according to

the methodology we described in section 2.3.2. The data suggest following trends:

- limmaQN and limmaVst have the most genes with low expression in one of the conditions

in their top 100 of most significant genes

- PoissonSeq, the only model that assumes a Poisson distribution, tends to have more

genes with high dispersion in its top 100 of most significant genes, in particular for the

the Bottomly and GTEx datasets which are the two datasets with the highest biological

variation

- in datasets with low biological variation, baySeq tends to select genes with high counts

even if the fold change is limited. This is particularly well illustrated by Figure S12j:

in the CRC AZA dataset, the gene that is detected as most significant by baySeq is

also the gene with the highest average cpm despite the fact that its estimated LFC

is small (0.0204). This gene, EEF1A1, is by the other methods even not classified as

differentially expressed.

As mentioned before, a methodological issue is that there are a lot of ties in the adjusted

p-values of SAMSeq and to a lesser extent for PoissonSeq. A same phenomenon is observed

for most of the methods in the Rapaport dataset: for eight out of the twelve methods, the

method’s top 100 most significant genes have exactly the same p-value. As such, these top

100 genes are only a subset of the method’s most significant genes as they are way more than

100 genes with exactly the same p-value. This impedes a fair comparison of the methods in

terms of the metrics currently used. Further research would be needed to investigate these

differences in more depth.

A final comment of this section concerns the spike-in genes in the Rapaport dataset. Our

original intent was to benchmark performance of the methods based on these 92 spike-in genes

for which the log expression change is predefined. However, when calculating performance

metrics based on the ERCC-genes, we found terrible results for all methods (Figure S-61) with

FDRs between 12% and 20% and FPRs exceeding 50%. When plotting the estimated LFCs

versus the theoretical LFCs, we found that all methods were consistently overestimating the

LFC as shown in Figure 3.7. In the literature we found that the ERCC spike-in read counts

are not independent from the biological factor of interest (Risso et al., 2014): the proportion

of reads mapping to spike-ins may be consistently larger in one condition than in another.

As a consequence, ERCC spike-ins are not suited to assess performance of DE methods.
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Dataset Method Nr Low Expr UQ Disp Nr top 10 Expr Unique adj. pval

minimal value 0 0 0 0

maximal value 100 100 10 100

CRCAZA edgeR classic 69 3 0 92

edgeR glm 70 3 0 92

edgeR rob 68 3 0 91

DESeq 69 0 0 95

DESeq2 63 3 0 91

LimmaQN 89 6 0 60

LimmaVoom 60 0 0 40

LimmaVoom QW 42 0 0 55

LimmaVst 81 2 0 62

BaySeq 77 1 3 100

PoissonSeq 61 18 0 1

SAMSeq 35 27 1 1

Bottomly edgeR classic 39 23 0 96

edgeR glm 39 24 0 95

edgeR rob 39 22 0 99

DESeq 37 26 0 96

DESeq2 29 22 0 96

LimmaQN 45 24 0 77

LimmaVoom 36 20 0 80

LimmaVoom QW 34 20 0 87

LimmaVst 42 22 0 86

BaySeq 39 21 0 100

PoissonSeq 29 34 0 32

SAMSeq 22 12 0 1

Hammer edgeR classic 2 0 0 95

edgeR glm 2 0 0 97

edgeR rob 2 0 0 96

DESeq 0 2 2 97

DESeq2 0 0 2 96

LimmaQN 28 32 0 1

LimmaVoom 0 0 0 14

LimmaVoom QW 0 0 0 18

LimmaVst 10 7 0 1

BaySeq 5 2 4 100

PoissonSeq 2 9 0 1

SAMSeq 4 13 0 1

GTEx edgeR classic 13 37 0 89

edgeR glm 15 38 0 94

edgeR rob 12 32 0 98

DESeq 12 24 0 90

DESeq2 11 33 0 93

LimmaQN 11 22 0 67

LimmaVoom 7 13 0 74

LimmaVoom QW 7 15 0 72

LimmaVst 10 17 0 64

BaySeq 7 30 0 100

PoissonSeq 7 64 0 16

SAMSeq 3 12 0 1

Rapaport edgeR classic 6 0 0 1

edgeR glm 6 0 0 1

edgeR rob 11 0 0 1

DESeq 10 0 0 1

DESeq2 0 0 0 1

LimmaQN 16 0 1 56

LimmaVoom 0 0 2 46

LimmaVoom QW 0 0 2 54

LimmaVst 17 0 1 47

BaySeq 2 0 0 1

PoissonSeq 14 19 0 1

SAMSeq 4 12 0 1

Table 3.5: Overview key metrics 100 most significant genes by dataset and method; ‘Nr Low Expr’ and ‘UQ

Disp’ express respectively the number of top 100 genes with low expression in one condition and with a

dispersion factor in the upper quartile of the dataset’s disperion distribution. ‘Nr top 10 Expr’ indicates how

many of the dataset’s top 10 most expressed genes occur in the top 100 of most significant genes. ‘Unique adj.

pval’ indicates the number of unique adjusted p-values in the top 100 of most significant genes.



Chapter 3. Results & Discussion 45

(a) edgeR classic (b) edgeR GLM (c) edgeR robust

(d) DESeq (e) DESeq2 (f) limmaQN

(g) limmaVoom
(h) limmaVoom with quality

weights
(i) limmaVst

(j) baySeq (k) PoissonSeq (l) SAMSeq

Figure 3.7: LFC estimates for the ERCC spiked-in genes in the Rapaport dataset. The ERCC genes consist

of four subgroups each having a different theoretical LFC: -2 (A), 0 (B), 0.58 (C) and 1 (D). The estimated

LFCs for the individual genes are shown by the dots (or triangles for values that would fall outside the plotting

window), the dashed lines represent the theoretical LFC for the respective groups. All methods seem to

overestimate the LFC.
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3.2 Simulations

While the concordance analysis helps to understand similarities and dissimilarities between

methods, it does not give insight in which of the methods perform best. We use simulations

to understand the different methods’ performance in terms of relevant metrics as FDR, FPR,

power and AUC. This is done under varying circumstances: we investigate the impact of

the fraction of outliers, fraction of differentially expressed genes, (a)symmetry in the data,

number of samples per condition, LFC of the DE genes and average expression level.

Figure 3.8 gives a comparison of methods in function of the fraction of outliers. Overall

we see that, except for PoissonSeq, the FDR and FPR remain stable or even slightly decrease

with the fraction of outliers. The power and the AUC are negatively impacted by the number

of outliers. At the level of the methods, following observations are made:

- In general, the order of the methods according to a particular performance metric does

not change dramatically in function of the fraction of outliers.

- In terms of the FDR, DESeq and the limma-based methods are around the nominal

level when there are no outliers and go below the nominal level in case of outliers.

edgeR classic and edgeR glm are slightly above the nominal FDR when there are no

outliers and around the nominal FDR with outliers. Robust edgeR and DESeq2 are

consistently above the nominal FDR, with values exceeding 10%. PoissonSeq is also

above the nominal FDR, with FDR values quickly inflating with the percentage of

outliers.

- The order of the methods for the FPR is similar as for the FDR, for all levels of the

percentage of outliers.

- Looking at power, it is observed that robust edgeR and to a lesser extent DESeq2

outperform the other methods. This effect becomes more outspoken when there are

more outliers. Note that in the setting of Figure 3.8 (5+5 samples, pDiff=0.05 and

pUp=0.50), SAMSeq has no power whatsoever.

- With respect to AUC most methods have comparable performance, except for DESeq

and DESeq2, in case there are no outliers. As soon as outliers are introduced, robust

edgeR has a higher AUC compared to the other methods. Two further remarks need

to be made here, which are nicely illustrated by Figure 3.9. First, DESeq and DESeq2

clearly have a lower AUC compared to the other methods. At least part of the reason is

that DESeq and DESeq2 exclude part of the genes from analysis and that we assigned

these genes a p-value of 1 in order to calculate the AUC for the same set of features

across all methods. Second, despite the fact that SAMSeq has no power in the setting

we used, it does have an AUC that is in line with the other methods. This is explained

by the fact that the DE genes have p-values higher than the nominal 5%, but still tend

to have p-values that are smaller than for the non-DE genes.
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Figure 3.9: Typical ROC curve by method (5+5 samples, pDiff=0.05, pUp=0.5, without outliers) - Similar

AUCs across methods are observed, except for DESeq and DESeq2. Lower AUCs of these latter methods are

at least partly driven by the fact that they exclude a number of genes from analysis.

Our observation that limma-based methods best control the FDR has been made before

(Soneson and Delorenzi, Love et al.). In addition, our analysis confirms the finding that

edgeR robust has a higher power, especially in the presence of outliers, but that this comes

at the cost of a too high real FDR (Zhou et al.). As not all methods control the FDR equally

well, the comparison of the power is not completely fair. Figure 3.10 shows the power in

function of the real FDR. Without outliers the edgeR-based methods, DESeq, DESeq2 and

the limma-based methods (except for limmaQN) have a comparable real FDR-power tradeoff,

with a slight advantage for edgeR glm. As soon as there are outliers, robust edgeR has a

markedly better power for the same real FDR compared to the other methods which supports

the claim of Zhou et al.
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(a) Without outliers

(b) With 5% outliers

Figure 3.10: Trade-off real FDR vs. power by method (5+5 samples, pDiff=0.05, pUp=0.5) - Extremes of

each line correspond with nominal FDR of respectively 1% and 10%. Robust edgeR has a markedly better

real FDR-power trade-off compared to the other methods in the presence of outliers.
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Figure 3.11 helps us to assess the impact of the fraction of differentially expressed

genes. The global picture tells us that a higher percentage of truly DE genes goes with a

lower FDR and a higher power but also with a higher FPR, while the AUC is stable. With

respect to the methods’ (relative) performance, we observe that

- The methods’ order of performance for each of the criteria does not change a lot in

function of the fraction of differentially expressed genes.

- If the percentage of DE genes is set to 70%, all methods have an FDR that is below the

nominal FDR, except for SAMSeq which stays slightly above 5%. However, for small

fractions of truly DE genes, the limma-based methods and to some extent DESeq are

the only methods that are around the nominal FDR. For percentages of DE genes as

small as 1%, edgeR classic, edgeR glm and PoissonSeq on average have FDRs larger

than 10%, robust edgeR and DESeq2 even have FDRs larger than 20%.

- The order of performance in terms of the FPR is preserved for various fractions of DE

genes. Only for SAMSeq the FPR has a stronger increase in function of the percentage

of DE genes compared to the other methods.

- For small (1% and 5%) to medium (20%) fractions of DE genes, robust edgeR and

DESeq2 have the highest power. SAMSeq which has no power for low fractions of DE

genes, has the highest power for very large fractions of DE genes (70%) but this comes

at the cost of a higher FDR an FPR than the other methods. Most important is that

for large fractions of DE genes the differences in power between the different methods

become way smaller than they are for small fractions of DE genes.

- A similar effect is observed for the AUC where DESeq and DESeq2 close the gap with

the other methods for larger fractions of DE genes.

As the fraction of DE genes has a clear impact on FDR control, authors might be tempted

to play with this parameter until they have a value for which their method shows good

performance. This might explain why Love et al. claims that DESeq2 has the highest power

of the methods that control the FDR, while we stated earlier that DESeq2 is characterized

by poor FDR control. Indeed, in their simulation exercise Love et al. use 20% of DE genes.

For this percentage of DE genes, we also find that the FDR of DESeq2 starts to come close

to the nominal FDR, while having the best power (together with edgeR robust). However,

for small fractions of DE genes, DESeq2 is far from having good FDR control. It is especially

in this setting of low fractions of DE genes, that the limma-based methods show markedly

better FDR control than the other methods. As such, it does not surprise that it is exactly

this setting that Law et al. pick to demonstrate performance of their limmaVoom method.
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If the percentage of DE genes is medium to low, symmetry or asymmetry in the direction

of differential expression does not seem to have an impact on performance, on the absolute

level of the metrics nor on the methods’ order of performance (Figure S153). However, when

the percentage of DE genes is high, asymmetry in the direction of differential expression has

a major negative impact on performance as can be seen in Figure 3.12. The same observation

has been made by Soneson and Delorenzi. The reason for this is that in this setting nor-

malization methods start to fail as these methods assume that the majority of genes is not

differentially expressed and that there is symmetry in the direction of differential expression.

Soneson and Delorenzi states that SAMSeq is more robust against this asymmetry, but this

is not confirmed by our simulations. We find that in this setting, SAMSeq indeed has the

best power, but it also has an unacceptable FDR.

Figure 3.13 shows that in general the number of samples only has a limited impact on the

absolute level of the FDR and FPR. The power and the AUC on the other hand experience

a positive impact of a growing number of samples. Again the methods’ relative performance

remains largely unchanged by an increasing number of samples. A few exceptions are:

- The FDR of DESeq and DESeq2 slightly decreases with the number of samples. As

such DESeq2 is the worst performer in terms of FDR control in the 3+3 samples case,

but this position is taken over by robust edgeR in case of more samples as the FDR of

robust edgeR does not seem to change with the number of samples.

- Something similar is observed for the FPR. While the FPR of DESeq and DESeq2 is

stable when the number of samples increases, the FPR of the other methods slightly

increases. In this way, robust edgeR surpasses DESeq2 as the method with the highest

FPR when the number of samples increases.

- While limma QN is far behind the other methods in terms of power in the case of 3+3

samples, it closes this gap when the number of samples increases. Similarly, in the

setting described (pDiff=0.05, pUp=50% and no outliers), SAMSeq only starts to have

power as of 7+7 samples.

- DESeq and DESeq2 get closer but stay behind the other methods in terms of AUC with

an increasing number of samples.

We also tested whether the behavior of the methods differs in function of the fold change

(Figure 3.14). Obviously, DE genes with a higher fold change have a higher probability to

be detected compared to DE genes with a lower fold change. While there are no big shifts in

the methods’ relative power with increasing fold changes, we do observe some subtle changes.

First, DESeq2 performs slightly better than edgeR classic and edgeR glm for lower absolute

fold changes (1.5-2), but slightly worse for higher absolute fold changes (>3), which is con-

sistent with the observations of Zhou et al. Second, limmaQN catches up with the other

limma-based methods when the fold changes get larger. Third, for PoissonSeq, the increase
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Figure 3.14: Power by method (at nominal FDR 5%) for DE genes with low (1.5-2), medium (2-3) and high

(>3) true fold change (5+5 samples, pDiff=0.05, pUp=0.5, without outliers) - DESeq2 is one of the more

powerful methods for low fold changes, but looses this edge for larger fold changes; LimmaQN has lower power

compared to the other methods for low fold changes.

in power is limited and the spread over the different simulated datasets grows with increasing

fold changes.

Figure 3.15 analyzes the results from the perspective of the average count of the genes.

The general picture, making abstraction of the individual methods, shows that the FPR does

not vary a lot for different levels of the average count. On the contrary, the FDR is signifi-

cantly higher for the lowest count group (<10 cpm), strongly exceeding the nominal 5% for all

methods. The power jumps from levels below 20% for the low count group, to levels around

80% for the medium count group (10-100 cpm) and values around 100% for the highest count

group (>100 cpm). As for most of the other factors we discussed, the average count has only

limited impact on the methods’ order of performance. Only notable exception is limmaQN

that has the highest FDR for low counts, but is the most conservative for the largest counts.

This, together with our previous observation of poor limmaQN performance for small num-

bers of replicates, corresponds with Rapaport et al. who state that the largest difference

between limmaQN and limmaVoom is in the number of false detections at low counts and in

the sensitivity as a function of the number of samples.
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So far we have been evaluating the methods by the FDR, the FPR, the power and the AUC.

All these metrics depend on the methods’ ability to correctly classify genes as DE or non-DE.

Related to this, but still something different, is the methods’ ability to correctly estimate

the (log) fold changes. Table 3.6 shows that the average bias is reasonably close to zero for

all methods, but that there are quite some differences in terms of the RMSE. LimmaVst and

DESeq2 have a RMSE that is considerably lower than the other methods. However, we don’t

agree with Love et al. who claims, based on a comparison of the RMSE between methods,

that DESeq2 more precisely estimates LFCs versus the other methods. The low RMSE of

DESeq2 and limmaVst is driven by a low RMSE for the non-DE genes as visualized in Figure

3.16. In the setting used, non-DE genes represent 95% of all genes and thus have a way larger

impact on the total RMSE compared to the DE genes. When visualizing the true versus the

estimated LFC for all genes (Figure 3.17), we see that DESeq2 and limmaVst structurally

underestimate the absolute LFC in the low count group and to a lesser extent in the medium

count group. The overall average bias of DESeq2 and limmaVst is close to zero because the

biases for overexpressed genes and underexpressed genes neutralize each other. However, it

is clear that for every individual non-zero level of the true LFC, DESeq2 and limmaVst do

have a bias. PoissonSeq is subject to the same problem, but here the issue is larger for the

medium and the large count groups. The high RMSE of SAMSeq is the consequence of a

number of low-count genes for which the estimated LFC is extremely far of the truth. All the

other methods show unbiased estimation of the LFC for all true LFC levels. Obviously, the

higher the average count, the more accurate LFC estimation becomes.

Bias RMSE

Method Non-DE DE Total Non-DE DE Total

edgeR classic 7.29e-04 3.25e-03 8.55e-04 0.423 0.429 0.424

edgeR glm 7.32e-04 3.25e-03 8.58e-04 0.423 0.429 0.424

edgeR rob 1.70e-04 2.88e-03 3.05e-04 0.458 0.458 0.458

DESeq 2.54e-05 2.98e-03 1.73e-04 0.432 0.436 0.432

DESeq2 1.79e-04 -3.47e-03 -3.75e-06 0.159 0.475 0.188

LimmaQN 6.37e-05 3.72e-03 2.47e-04 0.390 0.407 0.391

LimmaVoom 3.16e-04 4.51e-03 5.26e-04 0.429 0.435 0.429

LimmaVoom QW 3.57e-04 4.46e-03 5.62e-04 0.428 0.434 0.428

LimmaVst 2.36e-04 -1.04e-03 1.73e-04 0.133 0.545 0.178

PoissonSeq 1.50e-04 3.21e-03 3.03e-04 0.299 0.452 0.309

SAMSeq 8.67e-03 1.74e-02 9.11e-03 2.846 3.169 2.863

Table 3.6: Average bias and RMSE of LFC-estimation by method and type of genes (5+5 samples, pDiff=0.05,

pUp=0.5, without outliers) - DESeq2 and limmaVst have the lowest overall RMSE, but there is a big difference

between the RMSE for DE and non-DE genes
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Figure 3.16: Distribution of the estimated LFC of non-DE genes by method for low (<10 cpm), medium (10-100

cpm) and high (>100 cpm) average count (5-5 samples, pDiff=0.05, pUp=0.5, without outliers) - All methods

give unbiased estimates for the non-DE genes. For low counts, DESeq2 and limmaVst have a considerably

lower variance
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(a) edgeR classic (b) edgeR glm

(c) edgeR robust (d) DESeq

(e) DESeq2 (f) limmaQN

(g) limmaVoom (h) limmaVoom with quality weights

(i) limmaVst (j) PoissonSeq

(k) SAMSeq

Figure 3.17: True vs. estimated LFC of all genes by method for low (<10 cpm), medium (10-100 cpm) and

high (>100 cpm) average count (5-5 samples, pDiff=0.05, pUp=0.5, without outliers); Red points indicate

genes with an adjusted p-value <0.05, black points indicate genes with an adjusted p-value≥0.05 - DESeq2

and limmaVst structurally underestimate the absolute LFC for low and medium counts. PoissonSeq has a

similar issue for medium and high counts
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As we are particularly interested in how accurately the LFC is estimated for genes with

outliers, we create a similar picture for the outlier genes only. Table 3.7 reports the average

bias and the RMSE for outlier genes. Comparison with Table 3.6 shows that the RMSE is

way higher for outlier genes, but that the RMSE increase for edgeR robust is limited com-

pared to the increase for the other methods. Figure 3.18 visualizes the estimated versus the

true LFC of the outlier genes for different levels of average counts. For the low count groups

there is quite some scatter around the identity line for all methods. For the medium and high

count groups the differences are more outspoken. For these groups edgeR robust clearly shows

less scatter around the identity line, confirming our conclusion that edgeR robust estimates

the LFC of outlier genes more accurately compared to the other methods. It also classifies

more of the DE genes correctly (i.e. higher power), but this comes at the price of some false

discoveries. limmaQN, limmaVoom and limmaVoom with quality weights give a decent LFC

estimation for outlier genes. These methods have a lower power, but also a lower FDR; A final

remark is that for DESeq2, quite some of the outlier genes are excluded from the analysis,

especially in the high count group.

Bias RMSE

Method Non-DE DE Total Non-DE DE Total

edgeR classic 1.13e-03 2.89e-02 2.43e-03 0.952 0.964 0.953

edgeR glm 1.13e-03 2.89e-02 2.43e-03 0.952 0.964 0.953

edgeR rob 1.70e-03 2.06e-02 2.58e-03 0.517 0.526 0.517

DESeq 1.39e-03 2.90e-02 2.68e-03 0.955 0.971 0.956

DESeq2 -3.33e-04 -3.91e-04 -3.36e-04 0.466 0.706 0.480

LimmaQN 2.62e-03 2.15e-02 3.50e-03 0.590 0.613 0.591

LimmaVoom 2.81e-03 3.14e-02 4.15e-03 0.621 0.647 0.622

LimmaVoom QW 2.38e-03 3.06e-02 3.70e-03 0.620 0.647 0.621

LimmaVst 1.27e-03 7.75e-03 1.57e-03 0.474 0.609 0.481

PoissonSeq 1.17e-03 2.37e-02 2.22e-03 0.662 0.752 0.667

SAMSeq 4.89e-02 8.09e-02 5.04e-02 2.993 3.414 3.014

Table 3.7: Average bias and RMSE of LFC-estimation by method for outlier genes only (5+5 samples,

pDiff=0.05, pUp=0.5, 5% outliers) - RMSE is higher for outlier genes. edgeR robust experiences the smallest

increase in the RMSE.



Chapter 3. Results & Discussion 61

(a) edgeR classic (b) edgeR glm

(c) edgeR robust (d) DESeq

(e) DESeq2 (f) limmaQN

(g) limmaVoom (h) limmaVoom with quality weights

(i) limmaVst (j) PoissonSeq

(k) SAMSeq

Figure 3.18: True vs. estimated LFC of outlier genes (both DE and non-DE) by method for low (<10 cpm),

medium (10-100 cpm) and high (>100 cpm) average count (5-5 samples, pDiff=0.05, pUp=0.5, 5% outliers).

Red points indicate genes with an adjusted p-value <0.05, black points indicate genes with an adjusted p-

value≥0.05 - For medium and high counts, robust edgeR estimates the LFC more accurately compared to the

other methods



Conclusions

In this master thesis we compared several statistical methods for differential gene expression

analysis based on RNA-seq data. We focused on the most frequently used methods that are

available in R: edgeR (classic, glm and robust), DESeq and DESeq2, limma-based methods

(limmaVoom with and without quality weights, limmaQN and limmaVst), baySeq, PoissonSeq

and SAMSeq. Our key purpose was to come to a sound recommendation on which methods

perform best under varying conditions. Whereas earlier research states that no method is op-

timal under all circumstances, we claim that generally speaking two methods outperform

the others: edgeR robust and limmaVoom (with or without quality weights). The choice

for one of both depends on the performance criterion that is considered as most important

by the researcher.

EdgeR robust, which augments edgeR glm with a methodology to downweight outlying

observations in order to increase robustness, proves to have the best trade-off between

power and real FDR in the presence of outliers. If outliers are present, edgeR robust

has a higher power compared to the other methods for a given level of the real FDR. How-

ever, a major disadvantage of edgeR robust is that it is characterized by poor FDR control.

Especially for datasets where the percentage of truly differentially expressed genes is low, the

real FDR is way higher than the nominal FDR.

limma-based methods allow better control of the FDR. In particular limmaVoom (with

and without quality weights) shows strong performance: the trade-off between power

and real FDR is good and the real FDR is around or below the nominal FDR. This is

remarkable as this method only transforms the data and calculates weights before inputting

it into the limma pipeline that was originally developed for analysis of microarray data. In

our simulations limmaVoom with and without sample quality weights performed equally well.

However, our simulations did not really test the impact of differences in sample quality, the

setting that limmaVoom with quality weights was designed for. As such, in situations with

differences in sample quality, limmaVoom with quality weights might even be the better op-

tion.

62
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In general, we would not recommend to use the other methods: either they don’t show

a clear strength over the other methods or they even have an important disadvantage. In the

absence of outliers, edgeR classic, edgeR glm, DESeq, DESeq2 and LimmaVst have a similar

trade-off between power and real FDR compared to edgeR robust and limmaVoom. However,

they have a less favorable trade-off compared to edgeR robust when outliers are present, with

limmaVst experiencing the largest deterioration in the trade-off. Except for limmaVst, these

methods also underperform versus limmaVoom in terms of FDR control: edgeR classic, edgeR

glm and DESeq2 are too liberal, while DESeq is overly conservative. In addition DESeq2 and

LimmaVst give biased estimates of the log fold changes for low and medium gene counts. The

real FDR-power trade-off of limmaQN is less advantageous compared to the other methods.

In addition, relative to the other limma-based methods, it has a lower power for smaller fold

changes and a smaller number of samples and a higher real FDR for low count genes. baySeq

has a tendency to overselect genes with the highest average counts and is computationally

slow. PoissonSeq tends to overselect genes with high dispersion and it sees the number of

false discoveries quickly inflating when outliers are introduced. In addition it results in biased

estimates for the log fold changes of genes with medium and high counts. SAMSeq shows poor

performance when the number of samples is small. In the literature, twelve replicates per

condition is mentioned as a minimum before the nonparametric approach starts to work well.

This is a major drawback, knowing that in practice the number of replicates per conditions

is often not larger than two or three.

A number of factors have not been considered in our simulation study and could be used

as areas for further research. First, while our concordance analysis indicated that the

behaviour of the methods depends on the characteristics of the underlying dataset, this has

not been further explored in the simulation analysis where we only performed simulations

based on the CRC AZA dataset. Repeating the simulations on other datasets with different

characteristics of which the amount of biological variation and differences in sample quality

are probably the most important ones, could be useful to further refine the insights from

this master thesis. Second, as part of the concordance analysis we explored whether different

methods are more likely to select specific types of genes. Analyzing the set of genes classified

as differentially expressed by the different methods could help to gain a deeper understanding

hereof. Third, in our simulations, counts have been generated by means of a negative binomial

distribution. It could be of interest to check if our results still hold if the counts are generated

by different mechanisms. Finally, the scope of our research was limited to single-factor designs

and mRNA. As such, further research could evaluate the performance of the methods for

multi-factor designs and for other types of RNA.
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